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Introduction to Blocking, Nuisance factors, and Factorial Design
D. C. Montgomery, Design and Analysis of Experiment: Section 4.1

I The randomized complete block design (RCBD).
I Extension of the single factor ANOVA to the RCBD.
I General principles of factorial experiments.
I The two factor factorial with fixed effects.
I The ANOVA for factorials.
I Extensions to more than two factors.
I Quantitative and qualitative factors, response curves and surfaces.
I Estimation of Sample Size.

I Other blocking scenarios (Latin square designs, ...) and Incomplete
Block design will be covered next lesson.
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Introduction to Blocking and Nuisance factors

Blocking is a technique for dealing with nuisance factors
I A nuisance factor is a factor that probably has some effect on the

response, but it’s of no interest to the experimenter. . . however, the
variability it transmits to the response needs to be minimized.

I Typical nuisance factors include batches of raw material, operators,
pieces of test equipment, time (shifts, days, etc.), different experimental
units.

I Failure to block is a common flaw in the design of a experiment and
data analysis.

If the nuisance variable is known and controllable, we use blocking:
I If the nuisance factor is known and uncontrollable, sometimes we can

use the analysis of covariance to remove the effect of the nuisance
factor from the analysis.

I If the nuisance factor is unknown and uncontrollable, we hope that
randomization balances out its impact across the experiment.

I Sometimes several sources of variability are combined in a block, so
the block becomes an aggregate variable.

01NEX - Lecture 03 - Blocking + Factorial Design 3



The Hardness Testing Example

I We wish to determine whether different tips produce different (mean)
hardness reading on a tester machine.

I 4 different types of tips: conical, ball, cylinder, and cube.
I The test coupons (experimental unit) are a source of nuisance

variability.
I Experimental error measures both random error and variability between

coupons.

I To conduct this experiment as a RCBD, assign all 4 tips to each coupon.
I Each coupon is called a block; that is, it’s a more homogenous

experimental unit on which to test the tips.
I Variability between blocks can be large, variability within a block should

be relatively small.

In general, a block is a specific level of the nuisance factor. A complete
replicate of the basic experiment is conducted in each block and all runs within
a block are randomized.
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The Hardness Testing Example

Randomized Complete Block Design for the Hardness Testing Experiment

In completely randomized single-factor design, 16 different metal test coupons
would be required, one for each run in the design.

In RCBD, the variability between coupons from the experimental error is re-
moved.

Only randomization of treatments (Tips) is within the blocks, i.e. blocks repre-
sent a restriction on randomization.
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The Hardness Testing Example

The two-way structure of the experiment (Tips x Blocks)

We are interested in testing the equality of treatment means (again), but now
we have to remove the variability associated with the nuisance factor (the
blocks).
Analysis is identical to the two-factor factorial design without replication.
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The Hardness Testing Example
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The Hardness Testing Example
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The Hardness Testing Example
Interaction plot over Tips.
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The Hardness Testing Example
Interaction plot over Blocks.
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ANOVAfor the RCBD
Effects model for the RCBD:

yij = µij + εij = µ+ τi + βj + εij i = 1, 2, . . . , a j = 1, 2, . . . , b,

where µ is an overall mean, τi is the effect of the i th treatment, βj is the effect
of the j th block and εij ∼ N (0, σ2) random error term.

SSE = SST − SSTreatments − SSBlocks

=
a∑

i=1

b∑
j=1

(yij − ȳ..)
2 − b

a∑
i=1

(ȳi. − ȳ..)
2 − a

b∑
j=1

(ȳ.j − ȳ..)
2
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The Hardness Testing Example

summary(aov(resp~block+Tip,Data1))
Df Sum Sq Mean Sq F value Pr(>F)

block 3 0.825 0.27500 30.94 4.52e-05 ***
Tip 3 0.385 0.12833 14.44 0.000871 ***
Residuals 9 0.080 0.00889

The results obtained from this experiment and RCBD differ from results ob-
tained from Completely Randomized Design.

summary(aov(resp~Tip,Data1))
Df Sum Sq Mean Sq F value Pr(>F)

Tip 3 0.385 0.12833 1.702 0.22
Residuals 12 0.905 0.07542

Note, that the MS for Residuals has more than tenfold. All of the variability
due to blocks is now in the error term.
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The Hardness Testing Example
Model adequacy checking:

Verify the model by testing residuals for homoscedasticity and normality!!
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The Hardness Testing Example

Suppose that we would like to be able to determine the appropriate number of
blocks to run if we are interested in detecting a true max difference in readings
of 0.4 with a high probability and the estimate of the standard deviation is 0.1.

Φ2 =
bD2

2aσ2 ,where Φ2 is related to noncentral r.v. F0 =
MSTreatments

MSError

> b = seq(3,8,by=1) # number of blocks
> a = 4 # number of treatment levels
> D = 0.4 # max difference in group means
> sigma = 0.1 # standard deviation
>
> Fi_sq = b*(0.4)^2/(2*a*(0.1^2))
> Fi = sqrt(Fi_sq)
> Fi
[1] 2.449490 2.828427 3.162278 3.464102 3.741657 4.000000
> powers <- power.anova.test(groups=a,n=b,between.var = (D^2/2)/(a),

within.var=sigma^2,sig.level=.05)$power
> rbind(b , Fi, powers)

[,1] [,2] [,3] [,4] [,5] [,6]
b 3.0000000 4.0000000 5.0000000 6.0000000 7.0000000 8.0000000
Fi 2.4494897 2.8284271 3.1622777 3.4641016 3.7416574 4.0000000
powers 0.8009998 0.9490241 0.9891378 0.9979684 0.9996559 0.9999461
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OC Curves for the Fixed Effects Model ANOVA

ν1 = (a − 1) Numerator df , ν2 = (a − 1)(b − 1) Denominator df

[,1] [,2] [,3] [,4] [,5] [,6]
a 4.0000000 4.0000000 4.0000000 4.0000000 4.0000000 4.0000000
b 3.0000000 4.0000000 5.0000000 6.0000000 7.0000000 8.0000000
Fi 2.4494897 2.8284271 3.1622777 3.4641016 3.7416574 4.0000000
powers 0.8009998 0.9490241 0.9891378 0.9979684 0.9996559 0.9999461
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Introduction to Factorial Design

I Factorial Designs are most efficient methods for experiments where we
study the effects of two or more factors.

I The effect of the primary factor of interest in the experiment is called
main effect.

I If the difference in response between the levels of one factor is not the
same at all levels of other factors, the interaction occurs.
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The Battery Design Example

I Two factors: A = Material type; B = Temperature (quantitative variable)
I What effects do material type and temperature have on life?
I Is there a choice of material that would give uniformly long life

regardless of temperature?

Since there are two factors at three levels, this design is sometimes called a
32 factorial design.
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Box plot of data from the Battery Design Example
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Effects plot of data from the Battery Design Example
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Interactions plot of data from the Battery Design Example

01NEX - Lecture 03 - Blocking + Factorial Design 20



ANOVA for two factor factorial fixed effects model
Effects model for the Two Factor - Fixed Factorial Experiment:

yijk = µijk +εijk = µ+τi +βj +(τβ)ij +εij i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n.

where (τβ)ij is the effect of the interaction between τi and βj .

SSE = SST−SSAB−SSA−SSB = 77646.97−10683.72−39118.72−9613.78 = 18230.75
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ANOVA for Battery Design Example

> battery.aov <- aov(Life~Material*Temperature,data=battery)

> summary(battery.aov)
Df Sum Sq Mean Sq F value Pr(>F)

Material 2 10684 5342 7.911 0.00198 **
Temperature 2 39119 19559 28.968 1.91e-07 ***
Material:Temperature 4 9614 2403 3.560 0.01861 *
Residuals 27 18231 675
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ANOVA for Battery Design Example

> summary(battery.aov2 <- aov(Life~Material+Temperature,
data=battery))
Df Sum Sq Mean Sq F value Pr(>F)

Material 2 10684 5342 5.947 0.00651 **
Temperature 2 39119 19559 21.776 1.24e-06 ***
Residuals 31 27845 898

> anova(battery.aov2,battery.aov)
Analysis of Variance Table

Model 1: Life ~ Material + Temperature
Model 2: Life ~ Material * Temperature
Res.Df RSS Df Sum of Sq F Pr(>F)

1 31 27845
2 27 18231 4 9613.8 3.5595 0.01861 *
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Model checking for Battery Design Example
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Comparison between groups

> # Compute means and variance for all levels and factors
>
> with(battery, tapply(Life,list(Material,Temperature),mean))

15 70 125
1 134.75 57.25 57.5
2 155.75 119.75 49.5
3 144.00 145.75 85.5

> with(battery, tapply(Life,list(Material,Temperature),var))
15 70 125

1 2056.9167 556.9167 721.0000
2 656.2500 160.2500 371.0000
3 674.6667 508.2500 371.6667

01NEX - Lecture 03 - Blocking + Factorial Design 25



Comparisons between the treatment group means

Apply Tukey HSD test to test the pairwise comparisons between the treatment
group means

> TukeyMaterial = TukeyHSD(battery.aov,which="Material")
> Tukey multiple comparisons of means
95% family-wise confidence level
Material

diff lwr upr p adj
2x1 25.16667 -1.135677 51.46901 0.0627571
3x1 41.91667 15.614323 68.21901 0.0014162
3x2 16.75000 -9.552344 43.05234 0.2717815

> TukeyTemperature = TukeyHSD(battery.aov,which="Temperature")
> Tukey multiple comparisons of means

95% family-wise confidence level
Temperature

diff lwr upr p adj
70x15 -37.25000 -63.55234 -10.94766 0.0043788
125x15 -80.66667 -106.96901 -54.36432 0.0000001
125x70 -43.41667 -69.71901 -17.11432 0.0009787
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Comparisons between the treatment group means

Visualization of Tukey HSD test:
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Comparisons between the treatment group means
Because interaction is significant, we make the comparison at just one level of
temperature, say level 2 (70◦F).

battery.aov2<-aov(Life~Material,data=battery[battery$Temperature==70,])
TukeyMaterial2=TukeyHSD(battery.aov_70,which="Material")

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula=Life~Material,data=battery[battery$Temperature==70,])

$Material
diff lwr upr p adj
2-1 62.5 22.59911 102.40089 0.0045670
3-1 88.5 48.59911 128.40089 0.0004209
3-2 26.0 -13.90089 65.90089 0.2177840

T0.05 = q0.05(3, 27)

√
MSE

n
= 3.5

√
675.21

4
= 45.47

Test indicates that at the temperature level 70◦F, the mean battery life is the
same for material types 2 and 3, and that the mean battery life for material
type 1 is significantly lower in comparison to both types 2 and 3.
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Comparisons between the treatment group means
Since the interaction in the model is significant, the effect of Material depends
on which level of Temperature is considered. Let us compute the three means
at Temperature = 70◦F , appropriate 95% confidence intervals and compare
the observed difference of means with the critical value.

mm<- with(subset(battery, Temperature==70),
aggregate(Life,list(M=Material),mean))

M x M x M x
1 57.25 2 119.75 3 145.75

>val.crit <-qtukey(.95,3,27)*sqrt(unlist(summary(battery.aov))
[["Mean Sq4"]]/4)

[1] 45.5

T0.05 = q0.05(3,27)
√

MSE/n = 3.5
√

675.21/4 = 45.5

> diff.mm <- c(d.3.1=mm$x[3]-mm$x[1],d.3.2=mm$x[3]-mm$x[2],
d.2.1=mm$x[2]-mm$x[1])

d.3.1 d.3.2 d.2.1
88.5 26.0 62.5

> names(which(diff.mm > val.crit))
[1] "d.3.1" "d.2.1"

In conclusion, only Material type 3 vs. type 1 and Material type 2 vs. type 1
appear to be significantly different when Temperature is fixed at 70◦F.
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Sample Size Determination - Operating Characteristic Curve

To use OC curves, we need to know σ and Φ. We can estimate them from
actual values of the treatment means, τi = µi − µ̄i

It is often difficult to specify Φ and σ correctly in practice.
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Sample Size Determination - Operating Characteristic Curve
Operating Characteristic Curve Parameters for the Two-Factor Factorial, Fixed
Effects Model. (See charts V in the Montgomery DOE book)
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Sample Size Determination - Operating Characteristic Curve

An alternate approach is to select a sample size such that if the difference
between any two treatment means exceeds a specified value D.

By using Operating Characteristic (OC) curves: Find the smallest value of Φ2

corresponding to a specified difference between any two treatments means.

Let a be the number of levels of factor A and b the number of levels of factor
B. If any two treatment A means differed by as much as D, assumed standard
deviation is σ then

Φ2 =
nbD2

2aσ2

and the appropriate value of power for given numerator and denominator de-
grees of freedom in OC curves tables.
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Sample Size Determination for Battery Experiment

> n = c(2, 3, 4, 5)
> a = 3 # number of treatment levels A
> b = 3 # number of treatment levels B
> D = 40 # max difference in group means
> sigma = 25 # standard deviation
> Fi_sq = (n*b*(D)^2)/(2*a*(sigma^2))
> Fi = sqrt(Fi_sq)
> errorDF = a*b*(n-1)
> powers = power.anova.test(groups=3, n=n,

between.var = (n*(D^2))/((n-1)),within.var=sigma^2,
sig.level=.05)$power

> rbind(n , Fi ,errorDF, powers)
[,1] [,2] [,3] [,4]

n 2.0000000 3.0000000 4.000000 5.0000000
Fi 1.6000000 1.9595918 2.262742 2.5298221
errorDF 9.0000000 18.0000000 27.000000 36.0000000
powers 0.6391205 0.9116119 0.979752 0.9956568
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General Factorial Design - Response Curves

Let us assume that temperature is quantitative and use linear regression model
to fit data.

>Temperature.num=as.numeric(as.character(battery$Temperature))
>battery.aov3=aov(Life~Material+Temperature.num+

I(Temperature.num^2)+Material:Temperature.num+
Material:I(Temperature.num^2))

>summary(battery.aov3)
Df Sum Sq Mean Sq F value Pr(>F)

Material 2 10684 5342 7.911 0.00198
Temperature.num 1 39043 39043 57.823 3.53e-8
I(Temperature.num^2) 1 76 76 0.113 0.73975
Material:Temperature.num 2 2315 1158 1.714 0.19911
Material:I(Temperature.num^2) 2 7299 3649 5.405 0.01061
Residuals 27 18231 675

P-values indicate that A2 and AB are not significant, whereas the A2B is sig-
nificant. By removing A2 and AB the model is not hierarchical any more.
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General Factorial Design - Response Curves

P-values indicate that A2 and AB are not significant, whereas the A2B is sig-
nificant. By removing A2 and AB the model is not hierarchical any more.
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Homework experiment 01

Perform the homework experiment 01 described in the R file NEX2019_Ex03.R

The report can be elaborated by group up to 5 students, written in pdf file (R
Markdown is recommended) and handed till October 28.
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